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Abstract: Reinforcement Leamning (RL) is revolutionizing the field of
engineering through the solution of challenging, nonlinear, and high-
dimensional problems. This review examines how RL enriches the subjects of
engineering, such as optimization of industrial processes. Current techniques
in optimization and control are inefficient for some complex systems, but RL
serves as a better alternative through real-time optimization, product quality
improvement, and optimization of process efficiency. The article focuses on
recent advancements, challenges, and future prospects for extended
integration of RL in engineering and its possibility to revolutionize the field. It
also states its limitations and suggestions for future research. The review
serves as a good source of information for researchers and engineers
determined to remain up to date with recent advancements in RL for intelligent
engineering systems and extend its development.
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1. Introduction

The increasing development of intelligent automation has put Reinforcement Learning (RL) at
the forefront of innovation in various engineering applications [1] . RL, a type of machine learning
algorithm, uses an agent to make decisions in a dynamic environment where the agent learns by
feedback from interactions with the environment [2]. RL’s ability to operate effectively in complex,
uncertain, and nonlinear systems makes it an attractive option for solving problems in engineering
areas such as process control and optimization, process design, and fault diagnosis [3]. Unlike
supervised learning, which is trained on a labeled dataset, RL’s interaction with the environment
enables it to learn optimal behaviors via trial-and-error, which are reinforced by the reward signals
received from the interaction [4]. Additionally, RL’s adaptability to real-time changes is advantageous
for complex engineering problems, which range from robotics, autonomous systems to industrial
process optimization and energy management [5].

RL goal is to address limitations of traditional supervised learning, which relies on labeled data
provided by a supervisor[2]. Unlike supervised models that cannot go beyond the information
contained in the training set, RL agents learn an optimal policy through interaction with the
environment, using feedback in the form of rewards to improve performance[6]. This policy which
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maps state to action is learnt through trial-and-error search guided by a scalar reward signal. This
guided search introduces unique challenges relevant to engineering problems, particularly the trade-
off between exploration and exploitation. The agent seeks to maximize cumulative rewards, but it must
explore the state space to identify effective actions. In engineering control applications, this mirrors
the well-known dilemma of identification (estimation) versus control: a controller must sometimes
perturb a system to improve its model (exploration) before applying actions that maximize
performance (exploitation). For stochastic systems such as chemical reactors, energy systems, or
manufacturing processes, reliable decision-making requires repeated exploration of states to reduce
uncertainty. When rewards are delayed as in thermal systems where the effect of a control action may
only be observed minutes later [7]. This makes identifying optimal strategies even more complex.
Moreover, in non-stationary or time-varying systems, which are common in real-world engineering
(e.g., fluctuating feed conditions in chemical processes), continuous exploration is necessary to
maintain near-optimal control policies [8].

Furthermore, RL meets the demand of modern engineering operations by offering a flexible
framework that balances exploration of new strategies with the exploitation of learned knowledge,
enabling learning even in partially known environments [9]. This might not be the case for traditional
control strategies as they might fail in certain scenarios. This scenario includes the absence of
accurate mathematical models, model uncertainties, plant-model mismatch, and nonlinearities. The
high computational cost of system identification techniques, as well as the time-varying behavior of
dynamical systems, might also complicate traditional control strategies. Advances in computational
power and algorithmic development have accelerated the adoption of RL techniques. Early
approaches were based on tabular RL, such as Q-learning and SARSA, where value functions are
stored explicitly in a Q-table[10]. While the tabular approach is effective for small, discrete
environments, it becomes cumbersome as state-action spaces grow, due to the curse of
dimensionality[11]. To overcome this limitation, researchers introduced function approximation
techniques, paving the way for Deep Reinforcement Learning (DRL). These methods include Deep
Q-Networks (DQN), Policy Gradient Methods (PGM), Actor-Critic Architectures (ACA), and Model-
Based RL (MBRL) [12]. More recent Deep Reinforcement Learning (DRL) algorithms include Proximal
Policy Optimization (PPO), which stabilizes training by clipping policy updates[13]. Deep Deterministic
Policy Gradient (DDPG) is efficient in handling continuous action, and Soft Actor-Critic (SAC),
leverages entropy maximization to encourage exploration while achieving superior performance in
high-dimensional tasks[14][15]. RL algorithms have shown remarkable success within engineering
domains, achieving near-optimal control in complex scenarios. Moreover, hybrid frameworks that
combine RL with classical control methods, such as Model Predictive Control (MPC), or incorporate
physics-based models, offer potential pathways for enhancing safety, robustness, and interpretability
[16].

There are several surveys on reinforcement learning, however, most are restricted to
algorithmic development or narrow application domains. Some studies are specific to a concept in
process industries, such as process control, which omits other engineering domains. However, there
is less emphasis on cross-domain challenges or unified frameworks. For instance, a review by Dogru
et al., [17] is specifically on process control, while Weinberg et al. [18], is specifically on RL
maintenance. Hence, the objective of this paper is to highlight and showcase the potential of RL. By
bridging theory with practice, this review not only explains the mathematical basics of RL algorithms
but also includes case studies and real-world examples that show their effectiveness. Additionally, it
highlights ongoing challenges, including sample inefficiency, safety limitations, and interpretability,
providing insights into potential new solutions and future directions. This overview also acts as a
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fundamental resource for researchers and students seeking to understand and use RL in engineering
fields. The review does not sufficiently address the maturity and readiness of RL methods for industrial
use. Issues such as interpretability, and integration with existing control systems are mentioned but
not deeply analyzed from a practical adoption perspective. In lieu of these, this review focuses on the
comprehensive integration of reinforcement learning research across diverse intelligent engineering
systems, its critical examination of application-specific challenges (safety, interpretability, stability, and
data limitations), and its forward-looking perspective that outlines future research prospects tailored
to engineering practice.

2. Fundamentals of reinforcement learning

RL is based on Markov Decision Processes (MDPs), which is a mathematical framework used to
describe decision-making problems in environments where outcomes are stochastic and partly under
the control of an agent, which is the chief decision maker [19]. The MDP is a five-parameter turple
that includes the State(S) space, Action (A) space, Reward (R) Function, policy (1), and discount
factor (y). An agent is the decision-maker in reinforcement learning. A typical RL episode is present
in Figure 1, at each time step, the agent observes the current state of the environment. Based on this
state, the agent chooses an action according to its policy (the behavior). The environment then
responds to this action by transitioning to a new state and producing a reward, which is a numerical
signal that quantifies the consequence of the action.

| Agent ||
state reward action

S R, A,

5 Rnl (
P Environment ]4—
A\

Figure 1. RL diagram [20]

The agent’s goal is not just to maximize the immediate reward (short-term feedback), but to
maximize the expected return (which captures future rewards). The expected return, G; at time step t
is expressed in Equation 1.

Gy = IET[(ZIC:;O Vkrt+k+1) (1)

Y o V¥riik41 is an infinite discounted sum of future rewards. y € [0,1) is the discount factor, y= 0
favors immediate reward, y close to 1 the agent values long-term rewards almost equally to immediate
ones. E. (.) is the expectation under policy, 1. The policy governs the agent's behavior. r; is the reward
received at time t, and k represents the number of steps into the future. The agent iteratively updates
its policy to maximize this return through interaction with the environment.

3. Classification of Reinforcement Learning

RL algorithms can be classified based on different criteria that reflect their interaction and
learning strategies with the environment. They can be categorized into either model-free or model-
based approaches based on whether an explicit model of the environment is used. In a model-free
approach, the agent does not require knowledge of the dynamics of the environment, such as the
state transition probabilities or the reward model [21]. The agent learns from experience through trial
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and error, ultimately determining the best actions based on the rewards it receives after taking each
action. Conversely, model-based RL involves obtaining the optimal behavior by training a model that
encapsulates the environment’s dynamics [22]. This model helps in predicting the next state and
reward given the current state and action. Further classifications of RL algorithms are based on Policy
type, Action space, learning paradigm, policy interaction, and value estimation method. These
classifications provide a structured understanding of RL approaches, with their descriptions presented
in Table 1.

Table 1. RL classification

Category Description Examples References
Learns from experience .
; . Q-Learning, SARSA,
Model Usage Model-Free Wlth.Out modeling . REINFORCE [21]
environment dynamics.
Learns or uses a model of
Model-Based the environment to simulate Dyna-Q, PETS, MuZero [22]
transitions and rewards.
Learns value functions (e.g., . .
Policy Type Value-Based  Q-values); chooses actions Q-Learning, Deep Q-Leaming [23]
- (DQN)
indirectly.
Learns the policy directly; . :
Policy-Based  suitable for continuous action REI.N EOR.CE’ Proximal Policy [24]-{26]
Optimization (PPO)
spaces.
Advantage Actor-Critic (A2C)
_ ,Deep Deterministic Policy
Actor-Critic Simultaneously leams both  Gradient(DDPG), Twin Delayed [25], [26]
policy and value function.  peep Deterministic Policy
Gradient (TD3)
Action Space Discrete Agent chogses frolm afinite Gridworld, CartPole [27]
set of possible actions.
Continuous Aglept chooses ff°m an MuJoCo, Robotics Tasks [27]
infinite set of actions.
Learnl_ng Online Aggnt interacts wlth the. DQN. PPO, A2C 28], [29]
Paradigm environment while learning.
Agent learns from a fixed .
Offline dataset without further Batch.RL, Conservative Q- [28][30]
. . ) Learning (CQL)
environment interaction.
Policy On-Polic tiarn?hf;oggzta;zile;tsd State-Action- Reward-State- [30]
Interaction y N9 'me palicy Action(SARSA), A2C
trying to optimize.
Learns from data collected
Off-Policy using a different behavior Q-Learning, DDPG, TD3
policy.
Value Dvnamic Requires a complete model
Estimation Pr)'lo rammin of the environment (transition Value Iteration, Policy Iteration [31]-[33]
Method 9 9 probabilities & rewards).
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Category Description Examples References
Monte Does not require a model;
Carlo(MC) Iea.rns from complete First-Visit MC, Every-Visit MC
episodes.
Temporal Model-free; updates value
Difference (TD) esymates from partial TD(0), SARSA, Q-Learning
episodes.

Generalized TD methods
TD(A) & n-step handling both episodic and  TD(A), n-step Q-Learning
continuous tasks.

4. Algorithms in Reinforcement Learning
4.1. State-Action-Reward-State-Action (SARSA) and Q learning

State-Action-Reward-State-Action (SARSA) and Q-learning are both value-based
reinforcement learning algorithms designed to find optimal policies by estimating action-value
functions, commonly called Q-values [22, 23]. The primary difference between them lies in how they
update these values [35]. Q-learning is an off-policy method that assumes the agent always takes the
optimal next action, using the maximum Q-value of the next state in its updates [36]. In contrast,
SARSA is an on-policy method that updates based on the action the agent takes, considering
exploration strategies like e-greedy [37].

Both algorithms utilize a Q-table to store expected rewards for state-action pairs and depend
on trial-and-error interactions with the environment to improve their decision-making over time. While
SARSA updates reflect the current policy being followed, Q-learning converges toward the optimal
policy if there is sufficient exploration. Q-learning has several advanced variants, including Deep Q-
Learning (which uses neural networks for function approximation), Hierarchical Q-Learning (which
breaks problems into sub-tasks), and Nash Q-learning (used in multi-agent environments) [38]—[41].
These variants have been successfully applied in domains such as energy management, autonomous
navigation, load balancing in power grids, and optimization tasks like PV array reconfiguration with
hydrogen energy storage [42].

4.2. Policy-Based Algorithms

Policy-based reinforcement learning algorithms directly optimize the policy without estimating
value functions first [43], [44]. The work used Policy Gradient (PG) methods, which update the policy
parameters via Stochastic Gradient Ascent. Algorithms in this class include REINFORCE, Actor-Critic,
Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and Proximal Policy
Optimization (PPO). REINFORCE used Monte Carlo sampling to update policies based on full episode
returns [45]. Actor-Critic (AC) combines value and policy learning, where the actor updates the policy
and the critic evaluates actions. DDPG extends Q-learning to continuous spaces by using
deterministic policies and target networks [46]-[48].TD3 refines DDPG with twin critics and delayed
updates for improved stability [49]. PPO improves training by clipping large policy updates, enhancing
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robustness, and performance [13], [50]. A detailed description of the various policy-based algorithm
is presented in Table 2.

Table 2. Policy based algorithm

Algorithm Type Key Idea Use Case

Monte Carlo  Update policy after full episode using

REINFORCE PG returns

Simple episodic tasks

Actor learns policy; the critic estimates

Actor-Critic  Hybrid .
value function

Stable policy learning

Deterministic  Actor-critic for continuous control, uses Robotics, continuous

DDPG AC target networks and Polyak averaging spaces
D3 Improved Uses twin critics, noise, and delayed actor Reduces
DDPG updates overestimation, stable
PPO Clipped PG .Restrif;jcs policy updates to avoid Most stable and widely
instability used

5. Applications of Reinforcement Learning (RL)

RL has gained significant attention as an advanced control strategy in real-time industrial
systems, which often suffer from nonlinearities, disturbances, model uncertainties, and constrained
inputs [51]. These issues, especially the uncertainty in control gain for affine nonlinear systems, pose
difficulties for classical controllers like Proportional Integral Derivative (PID), Linear Quadratic
Regulator (LQR), and Nonlinear Model Predictive Control (MPC) [52]-[55]. RL offers a model-free
alternative, learning optimal control policies directly from interaction with the environment and enabling
superior trajectory tracking without explicit system models [56]. Studies have applied RL in various
domains from wheeled mobile robots using actor-critic structures [56] to chemical reactors using
Monte Carlo-enhanced DDPG for economic and terminal constraint satisfaction [57]. Actor—critic
methods offer exploration and policy richness; however, critic-only and hybrid approaches are more
computationally efficient and interpretable.

The integration of RL with Model Predictive Control (MPC) has proven to accelerate setpoint
tracking and automate tuning [58]; however, such methods are associated with MPC’s computational
demand. Critic-only architectures simplify deployment and reduce computational cost [59]; [51]. The
applicability of critic-only architecture remains narrower compared to the actor-critic framework.
Tackling uncertainty in gain sign of non-affine nonlinear systems, Nussbaum-type critic-only RL has
been employed [60]. However, embedded classical control structures, such as PID, into RL
frameworks, as seen in Control-Informed RL, have improved adaptability [61]. Actor-Critic methods
with dual reward structures have enabled generalization across complex Single Input Single Output
(SISO) and Multiple Input and Multiple Output (MIMO) systems [62], and Soft Actor-Critic (SAC) has
shown to outperform alternatives in high-dimensional continuous chemical processes though at the
expense of high training complexity [63]. In benchmark industrial problems, Neural-Fitted Q-Iteration
with Continuous Actions (NFQCA) demonstrated strong disturbance rejection [64]. Additionally, DRL
with causal modeling has shown promise in interpretable, energy-efficient supervisory control, yielding
significant energy reduction in industrial energy systems [65]. Collectively, these study, including
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policy evaluation methods and causal reasoning, continue to expand RL's potential for intelligent,
robust, and adaptive control across diverse industrial domains. RL excels in adaptability, while
classical controllers still outperform it in terms of guaranteed stability and safety. Hybrid designs, such
as Control-Informed RL, attempt to bridge this gap.

The strong coupling between process design and control in chemical systems presents
complex optimization challenges, often requiring computationally intensive bi-level Mixed-Integer Non-
Linear Programming (MINLP) formulations. Examples include hydrocracking [66] and Electricity-Gas-
Heat Integrated Energy Systems (EGH-IES), which exhibit high-dimensional dynamics and multi-
energy interactions with variable demands [67], [68]. Traditional methods struggle under such
nonlinearities and uncertainties, but RL can help optimize these complex processes. Recent
applications span from real-time reactor optimization [5] and chromatography control [69] to Heating,
Ventilation, and Air Conditioning (HVAC) system tuning [70] and energy system scheduling [71]. RL
has enabled improvements in fuel utilization [72], economic performance [73], yield enhancement [74],
and constraint handling [75]. Notably, Pan et al. [76] achieved a 24.9% cost reduction in solvent-
switching using PPO, while Oh et al. [77] applied A2C with a surrogate model for adaptive
hydrocracking optimization. Integrated Economic MPC-RL frameworks have also been explored for
real-time stability and economic efficiency [78], [79]. However, standard Q-learning often
underperforms in high-dimensional or continuous domains due to sample inefficiency and safety [80],
[81]. To overcome this, advanced methods like DDPG, PPO, and policy gradient variants have been
developed to ensure scalable, adaptive, and data-efficient control strategies across process industries
[82] — [85]. Also, surrogate-assisted RL can help reduce sample cost but may introduce bias, while
transfer/meta-learning enhances generalization across process classes [86][87].

Recent advances have positioned RL as a transformative framework for automating the
generation of chemical process flowsheets. Unlike conventional rule-based or heuristic techniques,
RL enables sequential decision-making in high-dimensional, constraint-laden environments without
requiring explicit domain knowledge. One of the pioneering contributions, SynGameZero by Gotti et
al. [88], formulated flowsheet synthesis as a self-play game using Monte Carlo Tree Search (MCTS),
achieving high separation efficiency without prior process expertise. Scaling SynGameZero to a more
complex flowsheet will make computation difficult. This challenge was addressed by Midgley (2020),
who developed a distillation gym. Distillation Gym is an RL environment for designing distillation trains
to separate multi-component feed streams, demonstrating RL's applicability to process synthesis,
which has traditionally been dominated by optimization techniques like MINLP [89]. Schwaller et al.
[90] introduced a transformer-based model combined with a hypergraph exploration strategy for
retrosynthetic planning in organic chemistry, enabling richer modeling of multi-step reaction pathways.
While their work did not explicitly focus on RL, it provided a foundation for Al-driven synthesis by
efficiently representing complex chemical sequences and dependencies. With previous studies not
handling recycling streams explicitly, Stops et al., [91], developed a hierarchical RL approach
integrated with Graph Neural Networks (GNNs) to handle recycling streams and continuous design
variables more effectively. Further innovations by [92] and [93] introduced masked hybrid PPO agents
with neural surrogate models, enabling simultaneous design, control, and feasibility assessment under
industrial constraints using Aspen Plus integration. Earlier works by Siirola and Rudd [94] laid the
foundation with rule-based synthesis frameworks, while recent general-purpose RL agents have
demonstrated the ability to discover novel flowsheet topologies beyond predefined heuristics [95],
[96]. Efforts to enhance learning efficiency and generalizability include hybrid Al-domain approaches
[97], transfer learning frameworks using DWSIM to reuse process knowledge [98], [99] and meta-
learning methods designed to adapt RL agents to varying synthesis tasks with improved sample
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efficiency [100]. Further study incorporated optimization which defines an optimal flowsheet as a
search through the thermodynamic space [101]. RL avoids rigid heuristics of rule-based synthesis but
remains sample-inefficient without surrogate integration or transfer learning. A recent extension of
modular RL by Gotti et al., [102], further examined the influence of fixed Reflux Ratios (RR),
underscoring the importance of flexible action space design in distillation optimization. However, the
fixed RR can limit transferability to broader and more adaptive distillation scenarios.

Given the complex, nonlinear, and often turbulent nature of fluid flow, RL has emerged as a
compelling alternative to traditional control and design techniques. RL is especially valuable in fluid
mechanics, where optimal control and design problems are high-dimensional and analytical solutions
are quite impossible to find [103]. Its model-free nature makes RL well-suited for computationally
intensive environments, such as fluid dynamics. Recent studies have demonstrated this potential.
Kurz et al., [104], integrated RL with high-fidelity Computational Fluid Dynamics (CFD) solvers to
enhance turbulence modeling, outperforming classical Smagorinsky models in predictive accuracy
and scalability. However, real-time deployment is a significant concern due to its computational
complexity. Bae and Koumoutsakos [105] developed a multi-agent RL approach, Scientific Multi-Agent
Reinforcement Learning (SciMARL), where agents at grid points learned turbulence behavior near
walls, reducing the need for large datasets. In fluid mixing,[106] applied RL to dynamically control
stirring in 2D flows, improving mixing uniformity in real-time. Font, [107],s demonstrated RL’s
effectiveness in suppressing Turbulent Separation Bubbles (TSBs), achieving a 9% reduction in TSB
area and a 25.3% drag reduction, surpassing conventional control. Additionally, Ren et al., [108],
applied deep RL to active flow control (AFC) around a cylinder, reducing drag by up to 34.2%, which
closely approaches the theoretical performance limits. Across these studies, RL has achieved state-
of-the-art drag reduction and turbulence suppression. Nonetheless, its high computational cost
remains a barrier to practical deployment. Surrogate-assisted or reduced-order models may present
promising avenues for accelerating training and real-time deployment.

6. Limitations, Emerging and Future Explorations

Though RL has seen significant success, further research is necessary to bridge the gap
between theoretical development and practical industry adoption. Additionally, deploying these
solutions in real-world settings and ensuring they generalize effectively across various scenarios
remains a pressing challenge in the environment. The majority of works rely heavily on simulation
environments, for instance, [76] and [77] do not fully capture the complexities and non-deterministic
nature of real industrial systems. The transferability of the RL model from synthetic environments to
real-world applications may be affected by model mismatch and noise in plant models. Hence, RL
research should be guided towards developing RL algorithms with cross-environment robustness and
generalizability to process uncertainty. Solution approaches such as transfer learning and meta-
learning are encouraging but require further comprehensive verification for applications across
multiple domains [100], [109].

In addition, RL incorporating model developed from first-principles approaches has also been
considered. Model-free RL is flexible, but it lacks interpretability. Hybrid models that include physical
models or control knowledge in RL frameworks, e.g., in Control-Informed RL, as well as actor-critic
models with PID priors, can significantly improve performance and interpretability [61]. An alternative
is Surrogate modeling, as in [92], [93], can support the integration of both design and control. Thus,
future research should continue along these lines to narrow the gap between domain-knowledge
learning.
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The use of generative Al especially through text-based transformer model such as large
language model (LLM) in flowsheet hasn’t been much documented. As presented in section 5, pioneer
work by [110] trained a transformer on SFILES 2.0, a textual flowsheet representation, to generate
autocompletions of flowsheet topologies. This approach supports interactive design by suggesting
plausible unit operations and connections as the user composes a flowsheet.. However, this work is
limited to autocompletion and lacks real-world validation, constraint enforcement, or integration with
simulation engines. Future research should extend this by fine-tuning domain-specific Large
Language Models, LLMs, on broader engineering text and flowsheet corpora; Integrating constraint
and feasibility checking, perhaps via hybrid LLM-RL architectures; Coupling text-to-flowsheet
generation with simulators (e.g., Aspen Plus), to enable full feedback loops between generation,
feasibility evaluation, and optimization [111].

Sample inefficiency and exploration in an unsafe environment are major barriers to deployment
in safety-critical systems. Many RL algorithms, especially Q-learning and policy gradient methods,
require extensive interactions to understand environment dynamics, which is impractical for real-time
systems. Future research should prioritize the development of constraint based RL with safety and
effectiveness as priority. Techniques such as reward shaping, Monte Carlo-based policy evaluation,
and the use of conservative or constrained policy updates [57], [69] are still underdeveloped.

Finally, the increasing scale and complexity of engineering systems call for attention to multi-
agent and distributed reinforcement learning. Multi-agent frameworks, such as those employed in
turbulence modeling , have shown the ability to handle spatially distributed systems [105]. However,
challenges such as coordination, stability, and partial observability remains. There is a need to explore
communication strategies and decentralized policies that can work under limited information and real-
time constraints.

7. Conclusion

Reinforcement Learning (RL) has demonstrated its versatility and efficacy across diverse
engineering disciplines, including process control, optimization, and fluid dynamics. Despite its
increasing success, substantial challenges remain, notably in safety, interpretability, and the
integration with physical principles. Addressing these issues is a vital direction for future research and
development, thereby facilitating the full realization of RL's potential in advancing engineering
innovation.
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