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Abstract: Reinforcement Learning (RL) is revolutionizing the field of 

engineering through the solution of challenging, nonlinear, and high-

dimensional problems. This review examines how RL enriches the subjects of 

engineering, such as optimization of industrial processes. Current techniques 

in optimization and control are inefficient for some complex systems, but RL 

serves as a better alternative through real-time optimization, product quality 

improvement, and optimization of process efficiency. The article focuses on 

recent advancements, challenges, and future prospects for extended 

integration of RL in engineering and its possibility to revolutionize the field. It 

also states its limitations and suggestions for future research. The review 

serves as a good source of information for researchers and engineers 

determined to remain up to date with recent advancements in RL for intelligent 

engineering systems and extend its development. 

Keywords: Reinforcement Learning; engineering; artificial intelligence; 

algorithms; complex system. 

1. Introduction 

The increasing development of intelligent automation has put Reinforcement Learning (RL)  at 

the forefront of innovation in various engineering applications [1] . RL, a type of machine learning 

algorithm, uses an agent to make decisions in a dynamic environment where the agent learns by 

feedback from interactions with the environment [2]. RL’s ability to operate effectively in complex, 

uncertain, and nonlinear systems makes it an attractive option for solving problems in engineering 

areas such as process control and optimization, process design, and fault diagnosis [3]. Unlike 

supervised learning, which is trained on a labeled dataset, RL’s interaction with the environment 

enables it to learn optimal behaviors via trial-and-error, which are reinforced by the reward signals 

received from the interaction [4]. Additionally, RL’s adaptability to real-time changes is advantageous 

for complex engineering problems, which range from robotics, autonomous systems to industrial 

process optimization and energy management [5]. 

RL goal is to address limitations of traditional supervised learning, which relies on labeled data 

provided by a supervisor[2]. Unlike supervised models that cannot go beyond the information 

contained in the training set, RL agents learn an optimal policy through interaction with the 

environment, using feedback in the form of rewards to improve performance[6]. This policy which 
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maps state to action is learnt through trial-and-error search guided by a scalar reward signal. This 

guided search introduces unique challenges relevant to engineering problems, particularly the trade-

off between exploration and exploitation. The agent seeks to maximize cumulative rewards, but it must 

explore the state space to identify effective actions. In engineering control applications, this mirrors 

the well-known dilemma of identification (estimation) versus control: a controller must sometimes 

perturb a system to improve its model (exploration) before applying actions that maximize 

performance (exploitation). For stochastic systems such as chemical reactors, energy systems, or 

manufacturing processes, reliable decision-making requires repeated exploration of states to reduce 

uncertainty. When rewards are delayed as in thermal systems where the effect of a control action may 

only be observed minutes later [7]. This makes identifying optimal strategies even more complex. 

Moreover, in non-stationary or time-varying systems, which are common in real-world engineering 

(e.g., fluctuating feed conditions in chemical processes), continuous exploration is necessary to  

maintain near-optimal control policies [8]. 

Furthermore, RL meets the demand of modern engineering operations by offering a flexible 

framework that balances exploration of new strategies with the exploitation of learned knowledge, 

enabling learning even in partially known environments [9]. This might not be the case for traditional 

control strategies as they might fail in certain scenarios. This scenario includes the absence of 

accurate mathematical models, model uncertainties, plant-model mismatch, and nonlinearities. The 

high computational cost of system identification techniques, as well as the time-varying behavior of 

dynamical systems, might also complicate traditional control strategies. Advances in computational 

power and algorithmic development have accelerated the adoption of RL techniques. Early 

approaches were based on tabular RL, such as Q-learning and SARSA, where value functions are 

stored explicitly in a Q-table[10]. While the tabular approach is effective for small, discrete 

environments, it becomes cumbersome as state-action spaces grow, due to the curse of 

dimensionality[11]. To overcome this limitation, researchers introduced function approximation 

techniques, paving the way for Deep Reinforcement Learning (DRL). These methods include Deep 

Q-Networks (DQN), Policy Gradient Methods (PGM), Actor-Critic Architectures (ACA), and Model-

Based RL (MBRL) [12].  More recent Deep Reinforcement Learning (DRL) algorithms include Proximal 

Policy Optimization (PPO), which stabilizes training by clipping policy updates[13]. Deep Deterministic 

Policy Gradient (DDPG) is efficient in handling continuous action, and Soft Actor-Critic (SAC), 

leverages entropy maximization to encourage exploration while achieving superior performance in 

high-dimensional tasks[14][15]. RL algorithms have shown remarkable success within engineering 

domains, achieving near-optimal control in complex scenarios. Moreover, hybrid frameworks that 

combine RL with classical control methods, such as Model Predictive Control (MPC), or incorporate 

physics-based models, offer potential pathways for enhancing safety, robustness, and interpretability  

[16]. 

There are several surveys on reinforcement learning, however, most are restricted to 

algorithmic development or narrow application domains. Some studies are specific to a concept in 

process industries, such as process control, which omits other engineering domains. However, there 

is less emphasis on cross-domain challenges or unified frameworks. For instance, a review by Dogru 

et al., [17] is specifically on process control, while Weinberg et al. [18], is specifically on RL 

maintenance. Hence, the objective of this paper is to highlight and showcase the potential of RL. By 

bridging theory with practice, this review not only explains the mathematical basics of RL algorithms 

but also includes case studies and real-world examples that show their effectiveness. Additionally, it 

highlights ongoing challenges, including sample inefficiency, safety limitations, and interpretability, 

providing insights into potential new solutions and future directions. This overview also acts as a 
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fundamental resource for researchers and students seeking to understand and use RL in engineering 

fields. The review does not sufficiently address the maturity and readiness of RL methods for industrial 

use. Issues such as interpretability, and integration with existing control systems are mentioned but 

not deeply analyzed from a practical adoption perspective.  In lieu of these, this review focuses on the 

comprehensive integration of reinforcement learning research across diverse intelligent engineering 

systems, its critical examination of application-specific challenges (safety, interpretability, stability, and 

data limitations), and its forward-looking perspective that outlines future research prospects tailored 

to engineering practice. 

2. Fundamentals of reinforcement learning 

RL is based on Markov Decision Processes (MDPs), which is a mathematical framework used to 

describe decision-making problems in environments where outcomes are stochastic and partly under 

the control of an agent, which is the chief decision maker [19]. The MDP is a five-parameter turple 

that includes the State(S) space, Action (A) space, Reward (R) Function, policy (π), and discount 

factor (γ). An agent is the decision-maker in reinforcement learning. A typical RL episode is present 

in Figure 1, at each time step, the agent observes the current state of the environment. Based on this 

state, the agent chooses an action according to its policy (the behavior). The environment then 

responds to this action by transitioning to a new state and producing a reward, which is a numerical 

signal that quantifies the consequence of the action. 

 
Figure 1. RL diagram [20] 

The agent’s goal is not just to maximize the immediate reward (short-term feedback), but to 
maximize the expected return (which captures future rewards). The expected return, 𝐺𝑡  at time step t 
is expressed in Equation 1. 

𝐺𝑡 = 𝔼π(∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 )           (1) 

∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0   is an infinite discounted sum of future rewards. γ ∈ [0,1) is the discount factor, γ= 0 

favors immediate reward, γ close to 1 the agent values long-term rewards almost equally to immediate 

ones. 𝔼π (. ) is the expectation under policy, π. The policy governs the agent's behavior. rt is the reward 

received at time t, and k represents the number of steps into the future. The agent iteratively updates 

its policy to maximize this return through interaction with the environment. 

3. Classification of Reinforcement Learning   

RL algorithms can be classified based on different criteria that reflect their interaction and 

learning strategies with the environment. They can be categorized into either model-free or model-

based approaches based on whether an explicit model of the environment is used. In a model-free 

approach, the agent does not require knowledge of the dynamics of the environment, such as the 

state transition probabilities or the reward model [21]. The agent learns from experience through trial 
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and error, ultimately determining the best actions based on the rewards it receives after taking each 

action. Conversely, model-based RL involves obtaining the optimal behavior by training a model that 

encapsulates the environment’s dynamics [22]. This model helps in predicting the next state and 

reward given the current state and action. Further classifications of RL algorithms are based on Policy 

type, Action space, learning paradigm, policy interaction, and value estimation method. These 

classifications provide a structured understanding of RL approaches, with their descriptions presented 

in Table 1. 

Table 1. RL classification 

  Category Description Examples References 

Model Usage Model-Free 

Learns from experience 

without modeling 

environment dynamics. 

Q-Learning, SARSA, 

REINFORCE 
[21] 

 Model-Based 

Learns or uses a model of 

the environment to simulate 

transitions and rewards. 

Dyna-Q, PETS, MuZero [22] 

Policy Type Value-Based 

Learns value functions (e.g., 

Q-values); chooses actions 

indirectly. 

Q-Learning, Deep Q-Learning 

(DQN) 
[23] 

 Policy-Based 

Learns the policy directly; 

suitable for continuous action 

spaces. 

REINFORCE, Proximal Policy 

Optimization (PPO) 
[24]–[26] 

 Actor-Critic 
Simultaneously learns both 

policy and value function. 

Advantage Actor-Critic (A2C) 

,Deep Deterministic Policy 

Gradient(DDPG), Twin Delayed 

Deep Deterministic Policy 

Gradient (TD3) 

[25], [26] 

Action Space Discrete 
Agent chooses from a finite 

set of possible actions. 
Gridworld, CartPole [27] 

 Continuous 
Agent chooses from an 

infinite set of actions. 
MuJoCo, Robotics Tasks [27] 

Learning 

Paradigm 
Online 

Agent interacts with the 

environment while learning. 
 DQN, PPO, A2C [28], [29] 

 Offline 

Agent learns from a fixed 

dataset without further 

environment interaction. 

Batch RL, Conservative Q-

Learning (CQL) 
[28][30] 

Policy 

Interaction 
On-Policy 

Learns from data collected 

using the same policy it's 

trying to optimize. 

 State-Action- Reward-State-

Action(SARSA), A2C 
[30] 

 Off-Policy 

Learns from data collected 

using a different behavior 

policy. 

Q-Learning, DDPG, TD3  

Value 

Estimation 

Method 

Dynamic 

Programming 

Requires a complete model 

of the environment (transition 

probabilities & rewards). 

Value Iteration, Policy Iteration [31]–[33] 
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  Category Description Examples References 

 Monte 

Carlo(MC) 

Does not require a model; 

learns from complete 

episodes. 

First-Visit MC, Every-Visit MC  

 Temporal 

Difference (TD) 

Model-free; updates value 

estimates from partial 

episodes. 

TD(0), SARSA, Q-Learning  

 TD(λ) & n-step 

Generalized TD methods 

handling both episodic and 

continuous tasks. 

TD(λ), n-step Q-Learning  

4. Algorithms in Reinforcement Learning 

4.1. State-Action-Reward-State-Action (SARSA) and Q learning 

State-Action-Reward-State-Action (SARSA) and Q-learning are both value-based 

reinforcement learning algorithms designed to find optimal policies by estimating action-value 

functions, commonly called Q-values [22, 23]. The primary difference between them lies in how they 

update these values [35]. Q-learning is an off-policy method that assumes the agent always takes the 

optimal next action, using the maximum Q-value of the next state in its updates [36]. In contrast, 

SARSA is an on-policy method that updates based on the action the agent takes, considering 

exploration strategies like ε-greedy [37]. 

Both algorithms utilize a Q-table to store expected rewards for state-action pairs and depend 

on trial-and-error interactions with the environment to improve their decision-making over time. While 

SARSA updates reflect the current policy being followed, Q-learning converges toward the optimal 

policy if there is sufficient exploration. Q-learning has several advanced variants, including Deep Q-

Learning (which uses neural networks for function approximation), Hierarchical Q-Learning (which 

breaks problems into sub-tasks), and Nash Q-learning (used in multi-agent environments) [38]–[41]. 

These variants have been successfully applied in domains such as energy management, autonomous 

navigation, load balancing in power grids, and optimization tasks like PV array reconfiguration with 

hydrogen energy storage [42]. 

4.2. Policy-Based Algorithms  

Policy-based reinforcement learning algorithms directly optimize the policy without estimating 

value functions first [43], [44]. The work used Policy Gradient (PG) methods, which update the policy 

parameters via Stochastic Gradient Ascent. Algorithms in this class include REINFORCE, Actor-Critic, 

Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and Proximal Policy 

Optimization (PPO). REINFORCE used Monte Carlo sampling to update policies based on full episode 

returns [45]. Actor-Critic (AC) combines value and policy learning, where the actor updates the policy 

and the critic evaluates actions. DDPG extends Q-learning to continuous spaces by using 

deterministic policies and target networks [46]–[48].TD3 refines DDPG with twin critics and delayed 

updates for improved stability [49]. PPO improves training by clipping large policy updates, enhancing 
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robustness, and performance [13], [50].  A detailed description of the various policy-based algorithm 

is presented in Table 2.  

Table 2. Policy based algorithm 

Algorithm Type Key Idea Use Case 

REINFORCE 
Monte Carlo 

PG 

Update policy after full episode using 

returns 
Simple episodic tasks 

Actor-Critic Hybrid 
Actor learns policy; the critic estimates 

value function 
Stable policy learning 

DDPG 
Deterministic 

AC 

Actor-critic for continuous control, uses 

target networks and Polyak averaging 

Robotics, continuous 

spaces 

TD3 
Improved 

DDPG 

Uses twin critics, noise, and delayed actor 

updates 

Reduces 

overestimation, stable 

PPO Clipped PG 
Restricts policy updates to avoid 

instability 

Most stable and widely 

used 

 

5. Applications of Reinforcement Learning (RL) 

RL has gained significant attention as an advanced control strategy in real-time industrial 

systems, which often suffer from nonlinearities, disturbances, model uncertainties, and constrained 

inputs [51]. These issues, especially the uncertainty in control gain for affine nonlinear systems, pose 

difficulties for classical controllers like Proportional Integral Derivative (PID), Linear Quadratic 

Regulator (LQR), and Nonlinear Model Predictive Control (MPC) [52]–[55]. RL offers a model-free 

alternative, learning optimal control policies directly from interaction with the environment and enabling 

superior trajectory tracking without explicit system models [56]. Studies have applied RL in various 

domains from wheeled mobile robots using actor-critic structures [56] to chemical reactors using 

Monte Carlo-enhanced DDPG for economic and terminal constraint satisfaction [57].  Actor–critic 

methods offer exploration and policy richness; however, critic-only and hybrid approaches are more 

computationally efficient and interpretable. 

The integration of RL with Model Predictive Control (MPC) has proven to accelerate setpoint 

tracking and automate tuning [58]; however, such methods are associated with MPC’s computational 

demand. Critic-only architectures simplify deployment and reduce computational cost [59]; [51]. The 

applicability of critic-only architecture remains narrower compared to the actor-critic framework. 

Tackling uncertainty in gain sign of non-affine nonlinear systems, Nussbaum-type critic-only RL  has 

been employed [60]. However, embedded classical control structures, such as PID, into RL 

frameworks, as seen in Control-Informed RL, have improved adaptability [61]. Actor-Critic methods 

with dual reward structures have enabled generalization across complex Single Input Single Output 

(SISO) and Multiple Input and Multiple Output (MIMO) systems [62], and Soft Actor-Critic (SAC) has 

shown to outperform alternatives in high-dimensional continuous chemical processes though at the 

expense of high training complexity [63]. In benchmark industrial problems, Neural-Fitted Q-Iteration 

with Continuous Actions (NFQCA) demonstrated strong disturbance rejection [64]. Additionally, DRL 

with causal modeling has shown promise in interpretable, energy-efficient supervisory control, yielding 

significant energy reduction  in industrial energy systems [65]. Collectively, these study, including 
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policy evaluation methods and causal reasoning, continue to expand RL's potential for intelligent, 

robust, and adaptive control across diverse industrial domains. RL excels in adaptability, while 

classical controllers still outperform it in terms of guaranteed stability and safety. Hybrid designs, such 

as Control-Informed RL, attempt to bridge this gap. 

The strong coupling between process design and control in chemical systems presents 

complex optimization challenges, often requiring computationally intensive bi-level Mixed-Integer Non-

Linear Programming (MINLP) formulations. Examples include hydrocracking [66] and Electricity-Gas-

Heat Integrated Energy Systems (EGH-IES), which exhibit high-dimensional dynamics and multi-

energy interactions with variable demands [67], [68]. Traditional methods struggle under such 

nonlinearities and uncertainties, but RL can help optimize these complex processes. Recent 

applications span from real-time reactor optimization [5] and chromatography control [69] to Heating, 

Ventilation, and Air Conditioning (HVAC) system tuning [70] and energy system scheduling [71]. RL 

has enabled improvements in fuel utilization [72], economic performance [73], yield enhancement [74], 

and constraint handling [75]. Notably, Pan et al. [76] achieved a 24.9% cost reduction in solvent-

switching using PPO, while Oh et al. [77] applied A2C with a surrogate model for adaptive 

hydrocracking optimization. Integrated Economic MPC-RL frameworks have also been explored for 

real-time stability and economic efficiency [78], [79]. However, standard Q-learning often 

underperforms in high-dimensional or continuous domains due to sample inefficiency and safety [80], 

[81]. To overcome this, advanced methods like DDPG, PPO, and policy gradient variants have been 

developed to ensure scalable, adaptive, and data-efficient control strategies across process industries 

[82] – [85]. Also, surrogate-assisted RL can help reduce sample cost but may introduce bias, while 

transfer/meta-learning enhances generalization across process classes [86][87]. 

Recent advances have positioned RL as a transformative framework for automating the 

generation of chemical process flowsheets. Unlike conventional rule-based or heuristic techniques, 

RL enables sequential decision-making in high-dimensional, constraint-laden environments without 

requiring explicit domain knowledge. One of the pioneering contributions, SynGameZero by Gotti et 

al. [88], formulated flowsheet synthesis as a self-play game using Monte Carlo Tree Search (MCTS), 

achieving high separation efficiency without prior process expertise. Scaling SynGameZero to a more 

complex flowsheet will make computation difficult. This challenge was addressed by Midgley (2020), 

who developed a distillation gym. Distillation Gym is an RL environment for designing distillation trains 

to separate multi-component feed streams, demonstrating RL's applicability to process synthesis, 

which has traditionally been dominated by optimization techniques like MINLP [89]. Schwaller et al. 

[90] introduced a transformer-based model combined with a hypergraph exploration strategy for 

retrosynthetic planning in organic chemistry, enabling richer modeling of multi-step reaction pathways. 

While their work did not explicitly focus on RL, it provided a foundation for AI-driven synthesis by 

efficiently representing complex chemical sequences and dependencies. With previous studies not 

handling recycling streams explicitly, Stops et al., [91], developed a hierarchical RL approach 

integrated with Graph Neural Networks (GNNs) to handle recycling streams and continuous design 

variables more effectively. Further innovations by [92] and [93] introduced masked hybrid PPO agents 

with neural surrogate models, enabling simultaneous design, control, and feasibility assessment under 

industrial constraints using Aspen Plus integration. Earlier works by Siirola and Rudd [94] laid the 

foundation with rule-based synthesis frameworks, while recent general-purpose RL agents have 

demonstrated the ability to discover novel flowsheet topologies beyond predefined heuristics [95], 

[96]. Efforts to enhance learning efficiency and generalizability include hybrid AI-domain approaches 

[97], transfer learning frameworks using DWSIM to reuse process knowledge [98], [99] and meta-

learning methods designed to adapt RL agents to varying synthesis tasks with improved sample 
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efficiency [100]. Further study incorporated optimization which defines an optimal flowsheet as a 

search through the thermodynamic space [101].  RL avoids rigid heuristics of rule-based synthesis but 

remains sample-inefficient without surrogate integration or transfer learning. A recent extension of 

modular RL by Gotti et al., [102], further examined the influence of fixed Reflux Ratios (RR), 

underscoring the importance of flexible action space design in distillation optimization. However, the 

fixed RR can limit transferability to broader and more adaptive distillation scenarios.  

Given the complex, nonlinear, and often turbulent nature of fluid flow, RL has emerged as a 

compelling alternative to traditional control and design techniques. RL is especially valuable in fluid 

mechanics, where optimal control and design problems are high-dimensional and analytical solutions 

are quite impossible to find [103]. Its model-free nature makes RL well-suited for computationally 

intensive environments, such as fluid dynamics. Recent studies have demonstrated this potential. 

Kurz et al., [104], integrated RL with high-fidelity Computational Fluid Dynamics (CFD) solvers to 

enhance turbulence modeling, outperforming classical Smagorinsky models in predictive accuracy 

and scalability. However, real-time deployment is a significant concern due to its computational 

complexity. Bae and Koumoutsakos [105] developed a multi-agent RL approach, Scientific Multi-Agent 

Reinforcement Learning (SciMARL), where agents at grid points learned turbulence behavior near 

walls, reducing the need for large datasets. In fluid mixing,[106] applied RL to dynamically control 

stirring in 2D flows, improving mixing uniformity in real-time. Font, [107],s demonstrated RL’s 

effectiveness in suppressing Turbulent Separation Bubbles (TSBs), achieving a 9% reduction in TSB 

area and a 25.3% drag reduction, surpassing conventional control. Additionally, Ren et al., [108],  

applied deep RL to active flow control (AFC) around a cylinder, reducing drag by up to 34.2%, which 

closely approaches the theoretical performance limits. Across these studies, RL has achieved state-

of-the-art drag reduction and turbulence suppression. Nonetheless, its high computational cost 

remains a barrier to practical deployment. Surrogate-assisted or reduced-order models may present 

promising avenues for accelerating training and real-time deployment. 

6. Limitations, Emerging and Future Explorations 

Though RL has seen significant success, further research is necessary to bridge the gap 

between theoretical development and practical industry adoption. Additionally, deploying these 

solutions in real-world settings and ensuring they generalize effectively across various scenarios 

remains a pressing challenge in the environment. The majority of works rely heavily on simulation 

environments, for instance, [76] and [77] do not fully capture the complexities and non-deterministic 

nature of real industrial systems. The transferability of the RL model from synthetic environments to 

real-world applications may be affected by model mismatch and noise in plant models. Hence, RL 

research should be guided towards developing RL algorithms with cross-environment robustness and 

generalizability to process uncertainty. Solution approaches such as transfer learning and meta-

learning are encouraging but require further comprehensive verification for applications across 

multiple domains [100], [109]. 

In addition, RL incorporating model developed from first-principles approaches has also been 

considered. Model-free RL is flexible, but it lacks interpretability. Hybrid models that include physical 

models or control knowledge in RL frameworks, e.g., in Control-Informed RL, as well as actor-critic 

models with PID priors, can significantly improve performance and interpretability [61]. An alternative 

is Surrogate modeling, as in [92], [93], can support the integration of both design and control. Thus, 

future research should continue along these lines to narrow the gap between domain-knowledge 

learning. 
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The use of generative AI especially through text-based transformer model such as large 

language model (LLM) in flowsheet hasn’t been much documented. As presented in section 5, pioneer 

work by [110] trained a transformer on SFILES 2.0, a textual flowsheet representation, to generate 

autocompletions of flowsheet topologies. This approach supports interactive design by suggesting 

plausible unit operations and connections as the user composes a flowsheet.. However, this work is 

limited to autocompletion and lacks real-world validation, constraint enforcement, or integration with 

simulation engines. Future research should extend this by fine-tuning domain-specific Large 

Language Models, LLMs, on broader engineering text and flowsheet corpora; Integrating constraint 

and feasibility checking, perhaps via hybrid LLM-RL architectures; Coupling text-to-flowsheet 

generation with simulators (e.g., Aspen Plus), to enable full feedback loops between generation, 

feasibility evaluation, and optimization [111]. 

Sample inefficiency and exploration in an unsafe environment are major barriers to deployment 

in safety-critical systems. Many RL algorithms, especially Q-learning and policy gradient methods, 

require extensive interactions to understand environment dynamics, which is impractical for real-time 

systems. Future research should prioritize the development of constraint based RL with safety and 

effectiveness as priority. Techniques such as reward shaping, Monte Carlo-based policy evaluation, 

and the use of conservative or constrained policy updates [57], [69] are still underdeveloped. 

Finally, the increasing scale and complexity of engineering systems call for attention to multi-

agent and distributed reinforcement learning. Multi-agent frameworks, such as those employed in 

turbulence modeling , have shown the ability to handle spatially distributed systems [105]. However, 

challenges such as coordination, stability, and partial observability remains. There is a need to explore 

communication strategies and decentralized policies that can work under limited information and real-

time constraints. 

7. Conclusion 

Reinforcement Learning (RL) has demonstrated its versatility and efficacy across diverse 

engineering disciplines, including process control, optimization, and fluid dynamics. Despite its 

increasing success, substantial challenges remain, notably in safety, interpretability, and the 

integration with physical principles. Addressing these issues is a vital direction for future research and 

development, thereby facilitating the full realization of RL's potential in advancing engineering 

innovation. 
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